Posted by Александр Венедюхин
https://dxdt.ru/2026/01/11/16907/
https://dxdt.ru/?p=16907
Небольшой исторический экскурс, про комплексные числа и “квадратный корень из минус единицы”. Читаем исходники Бомбелли. Почему Бомбелли? Потому что без упоминания этого итальянского инженера-математика 16 века не обходится ни один экскурс в историю внедрения комплексных чисел. Про Рафаэля Бомбелли нередко пишут, что он “первым ввёл в обиход комплексные числа”. Несомненно, труд Бомбелли “Алгебра” (L’Algebra) сыграл одну из ключевых ролей в становлении подходов к алгоритмическому пониманию комплексных чисел. Но что именно сформулировал Бомбелли, и как именно? Насколько этот объект похож на современные комплексные числа?
Традиционно ссылаются на небольшой фрагмент из “Алгебры” Бомбелли, в котором прямо определяются правила арифметики для “мнимой единицы”, то есть, для i. Тут, однако, кавычки необходимы: мнимая единица – это в современных терминах; как будет понятно далее, у Бомбелли всё несколько иначе записано.
“Алгебра” Бомбелли написана на итальянском. Чтобы проиллюстрировать различие подходов, я постараюсь в ключевых местах дать дословный перевод текста Бомбелли, максимально близкий к исходнику (ну, на мой взгляд). Это позволит понять, как вообще описывались алгебраические объекты до появления современной нотации, и возможно ли сравнивать объекты непосредственно.
Кстати, современная алгебраическая нотация является настолько огромным достижением сама по себе, что именно её мог бы использовать “попаданец” в средневековое европейское прошлое для эффективного убеждения инквизиторов в том, что он, “попаданец”, реально из будущего. Современные для двадцать первого века теоремы, скажем, типовой “попаданец” не сможет даже сформулировать. Как и убедительно рассказать про “металлических птиц” и “дальновидение”, чтобы обособить свой рассказ от прочих волшебных историй, бытовавших и в средние века – просто, тут необходимо знать слишком много, для “попаданца”. Зато базовая алгебраическая нотация, на уровне записи формул корней квадратного уравнения, нынче хорошо знакома едва ли не каждому, а на образованного инквизитора прошлого произведёт впечатление. Но всё это в художественном произведении, конечно. Почему-то, этот вариант, хоть он простой и доступный, упускают из виду. Вернёмся, впрочем, к итальянской “Алгебре” 16 века.
Ниже дан первый фрагмент скана соответствующей страницы (это издание 1579 года, из библиотеки Linda Hall; страница 169; выделение цветом – моё; в некоторых местах, где допустимо и если не влияет на контекст, – я исправляю опечатки исходника и меняю типографику на современную итальянскую, для лучшего текстового представления, например, u -> v; см. детали ниже).

Итак, итальянский – исходный язык, на котором писал свой труд Бомбелли. Это уже далеко не латынь, но и не совсем современый итальянский – 16 век, всё же. (Знание итальянского для понимания этой заметки не требуется – я все важные слова объясню ниже.) В самом начале страницы, Бомбелли, буквально, пишет (пожирнение тут везде соответствует тексту, выделенному на скане): “Я обнаружил другой тип кубических корней выражений, который сильно отличается от всех других” (“Ho trovato un’altra sorte di R.c.legate molto differenti dall’altre”.)
Здесь сразу же попадается интересный термин: “R.c.legate”, от Radice Cubica Legata, – это обозначение для кубического корня, вычисляемого для некоторого алгебраического выражения (формулы), которое, как сейчас сказали бы, стоит “под радикалом”. Откуда и legata – “связанная” (итальянское radice, “корень” – женского рода; кстати, если вы только изучаете русский, то и “корень” вам тоже может показаться существительным женского рода). В общем, если на русском, то будет “связанный корень” или, что несколько точнее, “присоединённый корень”.
Что тут имеется в виду? Бомбелли определяет соответствующий больший термин – Radice Legata – за несколько десятков страниц до рассматриваемого фрагмента “Алгебры”. И в определении дан такой пример (здесь он записан в современных обозначениях и терминах): пусть кто-то говорит, “найди мне квадратный корень из (7 + √48)”, это означает, что нужно найти такое выражение вида a + √b, которое, “умноженное само на себя, даст (7 + √48)”; такое выражение, пишет Бомбелли, это (2 + √3). Проверяем: (2 + √3)*(2 + √3) = 4 + 4*√3 + 3 = 7 + 4*√3 = (7 + √48). Сходится.
Однако Бомбелли, когда описывает здесь нахождение квадратного корня в подобной форме, не использует термин “квадратный корень”. Он, буквально, пишет: “найди мне сторону” (дословно: trovami il lato). И это, вообще говоря, сторона квадрата, площадь которого равна заданному выражению (с иррациональностью!). Это всё похоже на геометрический подход, разделяющий числа и “величины”.
Нужно отметить, что, как сейчас бы сказали, Бомбеллли строит расширение поля рациональных чисел: потому что (7 + √48) = (7 + 4*√3) – это присоединение к рациональным числам иррационального √3, где √3 – это обозначение числа, квадрат которого равен 3 (определение корней дано у Бомбелли через умножение, а это очень важно). То есть, рассматриваем всевозможные выражения вида a + b*√3, где a, b – рациональные числа. Естественно, во времена Бомбелли абстрактной теории полей ещё не было, как и коммутативной алгебры в современном понимании. Но тем не менее.
Получается, геометрическая интерпретация всё ещё отражена у Бомбелли в терминах (“найти сторону”), но искомые “радикалы” вводятся уже через присоединение “внешнего” корня многочлена, через расширение поля, а не через “углы”, которые сейчас повсеместно связывают с комплексными числами, – например, в радиотехнике, но не только там. Именно алгебраическое определение комплексных чисел через расширение поля (присоединение корня полинома X^2 + 1) и является современным, – “операционным” и алгоритмическим, – вариантом. Угловые меры, как инструмент, конечно, в труде Бомбелли тоже есть, в том числе, при рассмотрении решений кубических уравнений. Но это не комплексные числа, а другой инструмент.
Фактически, “R.c.legate” это запись корня уравнения в кубических радикалах, с присоединением иррациональностей. Но всё же, получается, что речь тут идёт о специальном “радикале”, как способе записи, а не о теоретическом “числовом” объекте. Это следует ещё и из того, что темой соответствующего раздела является решение уравнений третьей степени (формула Кардано, в частности). В современных обозначениях – ∛(a + √d) – кубический корень из выражения, содержащего корень квадратный. Этот последний момент – важен для понимания дальнейшего текста.
Итак, имеем радикалы из выражений вида a + b√d, как способ записи, пригодный для специальных вычислений. Идём дальше – дословный перевод следующего фрагмента со скриншота труда Бомбелли: “эта вещь [радикал] встречается в главе, рассматривающей куб, равный многим ([т.е. кратности неизвестного]) и числу”. Вот этот странный текст про “куб, неизвестное и число”, это есть ни что иное как запись словами уравнения вида x^3 = px + q, если в современных обозначениях. (Далее будем называть здесь q не “числом”, а константой – так понятнее.)
Бомбелли здесь рассматривает куб неизвестного х, слева, и он приравнивается к значению, кратному этому х (p*x), плюс некоторое число (буквально – numero), константа “без неизвестного”, то есть плюс q. Именно такая форма уравнений рассматривается. Вообще, это не единственная используемая “нотация”. Тот же Бомбелли далее в “Алгебре” использует специальную нотацию с отдельным обозначением степеней неизвестной арабскими цифрами (но без формального обозначения самой неизвестной – как сейчас написали бы: x или t). Однако в обсуждаемом фрагменте – тип уравнения назван просто словами. Ни о каких операциях речи ещё не идёт, но тут же вводится важное ограничение, выделяющее интересующий Бомбелли подтип уравнений и приводящее, в итоге, к “мнимым” (или “софистским”) радикалам.
Далее сформулировано условие, что (p^3)/27 больше (q^2)/4, но опять словами, при этом (p^3)/27 = (1/3*p)^3, а (q^2)/4 = (1/2*q)^2. Дословно по тексту: “когда куб одной третьей от кратности [неизвестного] – больше, чем квадрат половины числа [константы]”. В исходном тексте: “quando il cubato del terzo delli tanti è maggiore del quadrato della meta del numero” – “cubato del terzo” – “куб одной третьей”, “è maggiore del quadrato” – “больше квадрата” и т.д. То есть, всё описано словами, и речь о конкретном случае значений коэффициентов. Разительно отличается от современного подхода к изложению материала. Почему (p^3)/27 > (q^2)/4? Об этом сказано буквально через несколько слов.
Пропускаем слова о том, что примеры с таким уравнением Бомбелли разбирает в отдельной главе, читаем дальше и пытаемся разобраться: “соответствующий тип квадратного корня в своём вычислении (Algorismo) требует операций, отличных от всех других, и другого названия” (“la qual sorte di R.q. hà nel suo Algorismo diversa operatione dall’altre, e diverso nome”). Здесь R.q., от Radice Quadrata, – это уже квадратный корень, но терминологическая логика остаётся той же. Почему же речь теперь про квадратный корень, если сначала упомянуты кубические? Потому что здесь написано про “подрадикальный” корень, соответствующий вычислению корня кубического. Собственно, когда вы решаете кубическое уравнение в радикалах, то в процессе решения обязательно возникает квадратное уравнение и квадратные корни. В формуле Кардано они и составляют смысл всей затеи. О чём и пишет Бомбелли далее: “когда куб одной третьей кратности больше квадрата половины константы, тогда нельзя назвать [его] ни больше, ни меньше“. То есть, тут речь про значение “ни с плюсом, ни с минусом”. Необходимо учитывать, что отрицательные числа пока что не используются как класс, привычный сегодня: например, довольно сложно определить, что такое сторона квадрата, имеющая “отрицательную величину”. Поэтому “ни больше, ни меньше” – “ne più, ne meno”, – как операции увеличения и уменьшения чего-то: a + b, a − b.
Формула Кардано имеет вид (a + √b)^(1/3) + (a − √b)^(1/3), то есть, это сумма двух кубических корней, соответствующих R.c.legate Бомбелли, а “ни больше, ни меньше” относится к части √b. Ведь в формуле Кардано b = (q^2)/4 − (p^3)/27, соответственно, если (p^3)/27 больше (q^2)/4, то и получаем отрицательное значение под квадратным корнем. Это и есть та величина, про которую ни сказать, что “она больше”, ни сказать, что “она меньше”.
Дальше: “но [эти элементы] называю “плюс минуса”, там, где их нужно складывать ([увеличивать]), а где их нужно отнимать ([уменьшать]), называю “минус минуса”, и эта операция необходимейшая…” (“però lo chiamerò più di meno, quando egli si doverà aggiongere, e quando si doverà cavare, lo chiamerò men di meno, e questa operatione è necessarissima…”). То есть, в том случае, когда под радикалом отрицательное число, Бомбелли такое сочетание не считает возможным называть, ни “большим”, ни “меньшим” – читай: ни положительным, ни отрицательным, – но называет “плюсом минуса” и “минусом минуса”. Для прототипа i тут вводится специальное, двойное операционное обозначение. Те же “плюс минуса”/”минус минуса” можно перевести и как “больше минуса”/”меньше минуса”. Что это могло бы обозначать? А это больше всего похоже на описание способа выноса мнимой единицы из-под радикала. Например, перепишем (2 − √(-3)) как (2 − i*√3).
Что касается исключительной важности новой операции, которая объявлена “необходимейшей”, то речь тут об уравнениях четвёртой степени (potenza di potenza) разной формы, где подобные радикалы возникают “гораздо чаще, чем другие”.
Далее Бомбелли пишет, что “[подобные радикалы] многим покажутся скорее “софистскими”, чем “настоящими”; такого мнения и я сам придерживался тоже, пока не нашёл для него [радикала] демонстрации геометрической” (“la quale parerà à molti più tosto sofistica, che rale, e tale opinione hò tenuto anch’io, fin’ che hò trovato la sua dimostratione in linee”).
Как ни странно, но геометрическая демонстрация (на плоскости, да), которую Бомбелли приводит отдельно (а я здесь пропускаю), это вовсе не современная геометрическая интерпретация комплексных чисел – с поворотом, углами, мнимой и действительной осями.
Промежуточный итог: Бомбелли рассматривает некоторые “новые радикалы”, отдельный тип квадратного корня, со своим названием и свойствами, как составную часть операции отыскания кубических корней. То есть, в качестве вспомогательного элемента, чтобы операция работала, используется новый объект, который очень похож на мнимую единицу (см. “плюс-минусы” выше), но вовсе не на квадратный корень из минус единицы, как на число вообще и на “рациональное” число в особенности. Далее Бомбелли перечисляет правила умножения “знаков” для нового элемента: “и вначале разберу умножение, определив закон для плюса и минуса” (“e prima trattarò del Moltiplicare, ponendo la regola del più & meno”). На скриншоте ниже – эти определения.

Если новый “минус” заменить на обозначение i, то получится, что здесь написано следующее (пример из: F. La Nave and B. Mazur, Reading Bombelli, 2001):
1. (+)*(+i) = +i
2. (−)*(+i) = −i
3. (+)*(−i) = −i
4. (−)*(−i) = +i
5. (+i)*(+i) = −
6. (+i)*(−i) = +
7. (−i)*(+i) = +
8. (−i)*(−i) = −
Если представить, что “чистый” минус и “чистый” плюс – это подразумеваемые плюс/минус единицы по умножению (как в современной нотации), то получится, что в пятой строке записано (i*i) = i^2 = -1. А это корректное определение мнимой единицы. Может показаться, что обобщив определение квадратного корня в “Алгебре” Бомбелли получаем √(-1) = i, поскольку i*i = -1, но это не так, поскольку Бомбелли не вводит i как “число” или как измерение “стороны”. Это i – приписано сейчас, это некий анахронизм, а в исходном тексте (см. скриншот выше), фигурируют лишь операционные обозначения “плюс минуса” и “минус минуса”. И тем более выделение концепции мнимой единицы оказывается в некотором противоречии с тем, что данные специальные радикалы (R.C.Legata) вводятся непосредственно для выражений вида (a + √d), применительно к кубическим уравнениям. А в современном варианте извлечение кубических корней из комплексных чисел требует формулы Муавра и тригонометрического представления.
Бомбелли находит решение в радикалах для уравнения x^3 = 15*x + 4. Это, пожалуй, второй самый цитируемый фрагмент “Алгебры”. Во времена Бомбелли было известно, что кубическое уравнение всегда имеет один (действительный) корень, а особый интерес представляли только положительные корни. С одной стороны, положительный корень x^3 = 15*x + 4 нетрудно угадать: x = 4. С другой стороны, (4^2)/4 = 4, (15^3)/27 = 125, и формула Кардано даёт для этого уравнения следующее выражение: ∛(2 + √-121) + ∛(2 − √-121). Это как-то не очень похоже на 4.
Вообще, можно найти и некоторые другие озадачивающие варианты значений внутри формулы Кардано для уравнений с очевидным целым корнем, без “отрицательных радикалов”, особенно, если вам знакомо уравнение Пелля, но это тема для другой записки. Что же касается √-121, то это всё равно выглядит сложно. Даже сейчас, для современного взгляда. Потому что, вообще говоря, и значений кубического корня получается несколько, и для случая трёх действительных корней формула Кардано, мягко говоря, несколько бесполезна.
Однако Бомбелли, иллюстрируя свой новый метод, показывает, что (2 + i)^3 = (2 + √-121), если только следовать описанным выше правилам. И действительно, (2 + i)*(2 + i) = (3 + 4i), (3 + 4i)*(2 + i) = (2 + 11i) = (2 + √-121). Соответственно, (2 − i)^3 = (2 − √-121), так сказать, из соображений симметрии (это отмечено у Бомбелли, как ни странно). Поэтому ∛(2 + √-121) + ∛(2 − √-121) = (2 + i) + (2 − i) = 4. Вот только в данном конкретном случае значения нетрудно подобрать под известный ответ. А в других случаях – без рационального аналога тригонометрии с кубическими корнями будет трудновато.
https://dxdt.ru/2026/01/11/16907/
https://dxdt.ru/?p=16907